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Abstract

Topological features provide global information about a
shape, such as the number of the connected components, and
the number of holes and tunnels. These are especially impor-
tant in high-dimensional data analysis, where pure geometric
tools are usually not sufficient. When dealing with simplicial
homology, the size of the simplicial complex Σ is a major
concern, since all the algorithms available in the literature are
mainly affected by the number of simplices of Σ. Edge con-
traction has been the most common operator for simplifying
simplicial complexes. It has been used in computer graphics
and visualization and more recently in topological data analy-
sis. Edge contraction on its own does not preserve the homo-
logical information but a check, called link condition [2], has
been developed for verifying whether the contraction of an
edge preserves homology or not. However, since the number
of simplices in the link of an edge grows exponentially when
the dimension of the complex increases, checking the link
condition is costly. In our work, we consider the definition of
an homology preserving simplification algorithm, introduc-
ing a new way for verifying the link condition. We focus on
a specific class of representations for simplicial complexes
that we call top-based. A top-based representation encodes
only the vertices and top simplices (also called facets) of a
simplicial complex Σ, thus providing a data structure scalable
with the dimension and size of Σ.

Background notions Given a simplex of dimension p
(briefly a p-simplex), any simplex σ which is the convex hull
of a non-empty subset of the points generating τ is called a
face of τ . Conversely, τ is called a coface of σ . Given a p-
simplex σ , the set of simplices for which σ is a face is called
star of σ (also denoted St(σ)). If St(σ) = /0, σ is called top
simplex (or facet). A simplicial complex Σ is a finite set of
simplices, such that each face of a simplex in Σ belongs to Σ,
and each non-empty intersection of any two simplices in Σ is
a face of both. We say that Σ is a d-simplicial complex if the
largest dimension of its simplices is d.

Let Σ a d-simplicial complex, an edge contraction acts on
Σ by contracting an edge ε = (ν1,ν2) to one of its vertices
(i.e. ν1). As a result, all the simplices in St(ε) are removed
from Σ and all the simplices in St(ν1)− St(ε) are mapped
into St(ν2) in such a way that, for each simplex σ ∈ St(ν1)−

St(ε), µ(σ) = (σ − ν1)∪ ν2. Thus, edge contraction is an
operation linear in the number of simplices in St(ν1).

The link of a simplex σ ∈ Σ, denoted as Lk(σ), is the
set of faces of St(σ) that do not intersect σ . An edge
ε = (ν1,ν2) ∈ Σ satisfies the link condition if and only if
Lk(ν1)∩ Lk(ν2) = Lk(ε). For reducing the computational
cost of extracting the links all at once, a weaker condition,
called p-link condition, has been introduced in [3]. An edge
ε = (ν1,ν2) satisfies the p-link condition if and only if either
p≤ 0 or p > 0 and every (p−1)-simplex ∈ Lk(ν1)∩Lk(ν2)
is also in Lk(ε). Thus, an edge ε = (ν1,ν2) satisfies the link
condition if and only if it satisfies the p-link condition for all
p ≤ d. Despite the fundamental reduction in the computa-
tional cost, the numerosity of p-simplices in the link of two
vertices, still, can be huge depending on the dimension d of
the complex. We consider solving this problem, by adapting
the edge contraction and the link condition to perform on a
top-based representation.

Top-based homology preserving edge contraction
Encoding only the top-simplices and the vertices we can per-
form an edge contraction ε = (ν1,ν2) by focusing on the
simplices Sttop(ε), i.e. the set of top-simplices incident in
the edge removed, and Sttop(ν1), i.e. the set of top-simplices
incident in the vertex removed with ε . The key point is to
modify the set of simplices maintaining the top-based repre-
sentation valid. We recall that, in a top-based representation,
each simplex σ ∈ Σ is encoded if and only if σ is a vertex or
a top simplex. Thus, while removing the set of top simplices
incident in ε , it is crucial to recognize if new top simplices
must be introduced.

Algorithm 1 describes the procedure that can be imple-
mented on a top-based representation for performing an edge
contraction. Each top p-simplex σ ∈ Sttop(ε) is removed
with the edge (rows 5 to 10). By definition of edge contrac-
tion, all the faces of σ are removed with the exception of
the (p− 1)-faces γ1 = (σ − ν2) and γ2 = (σ − ν1), which
will be merged in a single (p−1)-face (for example γ2). Let
S = Sttop(γ1)∪ Sttop(γ2) be the set of top simplices in the
star of either γ1 or γ2. S cannot be empty before the edge
contraction, as, at least σ belongs to S. By merging γ1 and
γ2 while removing σ , the star of the new simplex will be
St(γ2) = S−σ . Then, γ2 is a new top simplex if and only if
St(γ2) = /0. Notice that this condition can be verified before
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Algorithm 1 contractEdge(ε ,Σ)
1: Input: Σ is a simplicial complex
2: Input: ε = (ν1,ν1) edge to be contracted
3: Output: Σ′ is a simplified simplicial complex
4: // For each top simplex in the star of ε

5: for each σ in Sttop(ε) do
6: γ1 = (σ −ν2)
7: γ2 = (σ −ν1)
8: if Sttop(γ1)∪Sttop(γ2) = σ then
9: addTop(γ2,Σ)

10: removeTop(σ ,Σ)
11: // For each top simplex in the star of ν1
12: for each σ in Sttop(ν1) do
13: σ = (σ −ν1)∪ν2
14: removeVertex(ν1)

performing the edge contraction by checking if S = σ (rows
8 to 9). Then, working on the set of top simplices incident
in ν1 (rows 12 to 13), we update Sttop(ν1), replacing ν1 with
ν2, without modifying the star of any other simplex. Finally,
we remove ν1 from Σ (row 14). The edge contraction be-
cames here aan operation linear in the number of simplices
in Sttop(ν1).

The link condition can be efficiently verified exploiting the
top-based representation as well. From the definition of link,
we can trivially say that Lk(ε)⊆ {Lk(ν1)∩Lk(ν2)} thus, the
link condition is satisfied when also the opposite is true. No-
tice that, the link of a simplex is a simplicial complex and,
thus, also the intersection of two simplicial complexes is still
a simplicial complex. So, we can conclude that the link con-
dition is satisfied if the top simplices in L = Lk(ν1)∩Lk(ν2)
are also in Lk(ε). Computing the top simplices of L is much
faster than computing the links, but, still, it is an expensive
operation. Let Ts the set of simplices obtained by pairwise
intersecting the simplices in Sttop(ν1) and Sttop(ν2). The top
simplices of L would be obtained by removing from Ts those
simplices that are not maximal in L. However, to improve
scalability, we avoid storing Ts thus considering all the sim-
plices originated by the intersection. The space complexity
of the top-based approach is then O(|T1|+ |T2|) since we only
need to store the top simplices incident in ν1 and ν2 while the
time complexity is O(|T1||T2|), thus, depending on the size
of T1 and T2. In practice, it is computationally faster than the
traditional (weak) link condition since it avoids: (i) the ex-
traction of the faces of the simplices σ ∈ T1,T2 (2d−1 faces
for each simplex); (ii) the intersection of the two sets Lk(ν1)
and Lk(ν2); (iii) and the comparison of the resulting set with
Lk(ε).

Experimental results In our evaluation, we use eleven
simplicial complexes having from 9 thousand to 14 millions
vertices. The dimension of the top simplices goes from 7 to
68. The hardware configuration used for these experiments
is an Intel i7 3930K CPU at 3.20Ghz with 64 GB of RAM.

We have implemented the simplification approach, using a
specific top-based representation, the Stellar tree [4]. On the
top of it we have implemented both the weak link condition
[2] and the new top-based approach for verifying the link
condition. The size of each simplicial complex Σ is then re-
duced applying homology preserving edge contractions until
no more can be applied without changing the homology of Σ.
A simplification process is killed after 25 hours of computa-
tion. The simplification ratio is, on average, around 90%-95%
of the initial number of vertices. From the results obtained
the limitation of the approach based on the weak link con-
dition is evident. Using the latter, the simplification process
ends in very few cases (two datasets). Typically the compu-
tation exceeds the 25 hours and, in two cases, the process
exceeds the 64GB of memory. Verified the computational im-
provement for checking the link condition we have evaluated
the practical relevance of the proposed approach comparing
the performances of our implementation with respect to the
state-of-the-art data structure for performing edge contrac-
tions, the Skeleton-Blocker [2] (as implemented in [1]). From
the results obtained we can say that the Stellar tree is gener-
ally faster taking 25% to 70% of the time required by the
Skeleton-Blocker for simplifying a dataset. Focusing on the
timings distribution, the Skeleton-Blocker needs more effort
for updating the structure during the edge contraction while it
is particularly fast at verifying the link condition. Conversely,
the Stellar tree is faster at performing the contraction but it
is slower at checking the link condition. This is an expected
result due to the characteristics of the two data structures (de-
tails are are not included for brevity). Analyzing the memory
peak, i.e. the amount of memory used at runtime for perform-
ing simplification, the Stellar tree is also more compact, using
from 30% to 80% of memory required by Skeleton-Blocker.
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