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ABSTRACT
A common issue in network analysis consists in the detection and
characterization of the key vertices and communities. To this pur-
pose, visualization tools could be of great help to support domain
experts in analyzing this kind of data. However, the size of real net-
works can seriously affect the practical usage of these tools, thus,
requiring the definition of suitable simplification procedures that
preserve the core network information. In this work, we focus on
geolocalized social networks, and we describe a tool for the analysis
of this kind of data based on topological information. Supported
by recent trends in network analysis, our approach uses simplicial
complexes as a model for social networks. A homology-preserving
simplification is used for dealing with the data complexity and for
reducing the information to be visualized to the essential. By com-
bining the representation based on simplicial complexes and the
simplification tool, we can efficiently retrieve topological informa-
tion useful for the network analysis. Both the effectiveness and
scalability of our approach are experimentally demonstrated.

Keywords
Network analysis and visualization; geolocalized social networks;
homology-preserving simplification; simplicial complexes.

1. INTRODUCTION
Network analysis is an active research topic with a variety of

applications including sociology, physics, electrical engineering,
biology, and economics. A social network is a complex system
consisting of individuals connected by specific relationships, such
as friendship, common interests, and shared knowledge. The most
common way to model a network is through a graph G = (N,A)
where each individual is represented as an element in the set of
nodes N, while a friendship tie between two individuals is mod-
eled through an arc of G. Different attributes are attached to ver-
tices and edges depending on the type of the network. For exam-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

LBSN 16, October 31-November 03 2016, Burlingame, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4586-6/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/3021304.3021309

ple, when working with location-based social networks [18, 29],
GPS coordinates are attached to each vertex of G, representing the
geospatial position of the content that an actor decided to share (pic-
tures, restaurant reviews, etc.). The level of complexity reached by
this kind of representations is well known, and a vast literature ex-
ists dealing with the problem of extracting information using tools
rooted in graph analysis [14].

In this work, we approach the problem of social network analysis
from a different perspective. When using a graph G to encode the
relations among the actors, we can only represent pairwise friend-
ships. Here, we involve the use of simplicial complexes for repre-
senting more relations. Starting from the graph G, we will compute
the cliques of G, defined as a set of actors with mutual friendship
relations. Our objective here is twofold: (i) by using a suitable data
structure for encoding the simplicial complex we reduce the num-
ber of entities stored (when the number of cliques is lower than the
number of edges) and (ii) we extract structural information about
the complex (such as the distribution of the cliques or the minimal
non-faces) that would be impossible to compute on the graph. A
minimal non-face, or blocker, roughly represents a small hole in the
complex, corresponding to missing friendship relations. The simpli-
cial complex computed on the graph G is initially free of blockers.
By using an homology preserving simplification procedure, we are
able to simplify the original simplicial complex reducing its size
while preserving all the holes. Each one of these holes will be
represented by a new blocker in the simplified representation.

We consider here specific networks in which users are provided
with a geographical location. We denote such networks as geolocal-
ized social networks since we are only considering a single location
per user. Each edge of the original graph is also represented as
"weighted" by computing the distance between the locations of the
connected users. The same approach can be extended to a wider
class of networks such as social, sensor, collaborative and biological
networks.

The main contributions of this paper are:
• a set of topological queries for retrieving information from a

network encoded as a simplicial complex;
• the description of the data structure used for encoding the

simplicial complex and the implementation of these queries
on it;
• the description of the simplification algorithm [16] used for

creating blockers on a simplicial complex and the definition
of an efficient algorithm for identifying them.

The remainder of this paper is organized as follows. In Section
2, we review some background notions on simplicial complexes



and simplicial homology. In Section 3, we discuss related work
on complex network analysis and on dimension-independent rep-
resentations for simplicial complexes. In Section 4, we describe
how we extract a simplicial complex from social network with the
Stellar tree and how we encode the complex within it. In Section 5,
we describe the network properties and degrees, and how to extract
them from a simplicial complex using the Stellar tree. In Section
6, we describe our method for simplifying a geolocalized social
network. In Section 7, we describe how to detect the blockers of a
simplicial complex, introducing an algorithm for extracting them.
In Section 8, we present experimental evaluations of our claims.
Finally, concluding remarks are drawn in Section 9.

2. BACKGROUND NOTIONS
In this section, we introduce some background notions which are

at the basis of our work, namely simplicial complexes and simplicial
homology.

A simplicial complex Σ on a finite set V is a collection of non-
empty subsets of V , called simplices, such that if τ ∈ Σ, σ ⊆ τ ,
then σ ∈ Σ. Given a simplicial complex Σ, the elements of V are
called vertices of Σ and a simplex σ ∈ Σ is called a k-simplex if it
consists of k+1 vertices. In the following, we denote a k-simplex
σ = {v0,v1, . . . ,vk} as v0v1 . . .vk and each non-empty subset of σ

as a face of σ . Geometrically, each simplicial complex can be
considered as a subspace of a suitable Euclidean space En and, in
such a context, each k-simplex is represented as the convex hull of
k+1 geometrically independent points. For instance, a 1-simplex is
an edge, a 2-simplex is a triangle, a 3-simplex is a tetrahedron and so
on. Given a k-simplex σ , the dimension of σ is defined to be k and
denoted as dim(σ). More generally, in the following we will use the
term dimension to denote the size decreased by one of any subset
of V even if it does not represent a simplex of Σ. The dimension of
a simplicial complex Σ, denoted as dim(Σ), is the largest dimension
of the simplices in Σ. For example, Figure 1(b) shows a simplicial 3-
complex since its biggest simplex is a tetrahedron, i.e. σ2. For k≥ 0,
the k-skeleton of Σ is the simplicial complex Σ(k) consisting of the
simplices of Σ of dimension less or equal to k. Given a simplex
σ ∈ Σ, the star of σ , denoted as St(σ), is the set of the simplices
of Σ containing σ . A simplex σ ∈ Σ, for which St(σ) consists only
of σ itself, is called top simplex (or, equivalently, facet). In the
following, we denote as Sttop(σ) the set of the top simplices of Σ

containing σ . For the simplicial complex shown in Figure 1(b) the
set Sttop(v) = {σ1,σ2,σ3}. The link of a simplex σ ∈ Σ, denoted
as Lk(σ), is the simplicial complex consisting of the faces, having
empty intersection with σ , of the simplices in St(σ).

In this work, we will consider simplicial complexes obtained by
expanding the cliques of a graph, also called flag complexes. A flag
complex of a graph G = (V,E) is the simplicial complex Flag(G)
whose simplices coincides with the cliques of G. In this framework,
the top simplices of Flag(G) correspond to the maximal cliques of
G and the 1-skeleton of Flag(G) is the graph G itself. The simpli-
cial complex depicted in Figure 1(b) is the flag complex computed
on the graph G depicted in Figure 1(a).

Studying the topology of a flag complex is important for retriev-
ing its structural properties. Some of these properties can be ob-
tained by retrieving the holes (or, more formally, the homology)
and the blockers of the associated simplicial complex.

Simplicial homology is a powerful tool in shape analysis, provid-
ing topological invariants for shape description. Roughly speaking,
homology reveals the presence of "holes" in a shape. In dimension
0, these represent the connected components of the complex, in
dimension 1, its tunnels and its holes, in dimension 2, the shells
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Figure 1: (a) A graph and (b) the corresponding flag complex.
After removing edge e from the flag complex, a blocker (in red)
is created (c).

surrounding voids or cavities, and so on.
The notion of blocker, introduced in [1], is related to the notion

of hole in the considered simplicial complex. Given a simplicial
complex Σ on V , a blocker (or, equivalently, a minimal non-face) of
Σ is a subset σ of V of dimension strictly greater than 1 such that
every subset of σ except for σ itself is a simplex of the simplicial
complex Σ. In Figure 1(c), the only blocker of the simplicial com-
plex is the missing triangle having all its three edges (depicted in
red) part of Σ.

3. RELATED WORK
In this section, we provide an overview of the methods, based

on simplicial complexes, for analyzing networks. Then, we present
the state-of-the-art data structures commonly used for encoding
simplicial complexes of arbitrary dimension.

3.1 Complex network analysis
Complex network analysis concerns the study of systems repre-

senting connections between distinct elements or actors [24, 28, 30].
Networks have become a useful tool to represent systems from a
wide variety of research fields. Examples include social, sensor,
collaborative and biological networks [7].

Several methods have been proposed to analyze a network from
different viewpoints. The term egocentric networks, refers to the
analysis of a network focusing on the study of the ties of a single
individual and on its local relevance. Thanks to suitable centrality
measures, this kind of analysis can identify different roles for an
individual such as isolated, outlier, broker or keyplayer [8].

Sociocentric (or, whole) networks focus on large groups of in-
dividuals or elements studying global and structural properties of
the entire network. The connectivity of a network can be measured
through a large variety of attributes and descriptors such as density,
cohesion, diameter, small worlds, bridges and structural holes. A
relevant issue in this kind of analysis is related to the study of com-
munities such as groups or social circles [13, 21]. In this respect, a
core notion is captured by the concept of clique [20].

Based on these notions, different methods, which exploit statisti-
cal, combinatorial or topological techniques, have been developed
allowing to retrieve the connectivity structure of a network. The
retrieved information is usually collected and visualized thanks to
clustered or dynamical representations. In the first case, the individ-
uals of a network are partitioned with respect to the communities
they belong to; in the other one, portions of the network are dy-
namically highlighted according to evolving parameters reflecting
network cohesion.

Analyzing networks through simplicial complexes
Different proposals can be found using simplicial complexes for
analyzing a network. Including all the information provided by the
original graph, the simplicial complex has been used for computing



descriptors that better reflect relations among data, representing
communities of strongly-connected individuals.

Applications involve networks of various nature including collab-
orative [22, 31, 4], social and communication [17], sensor [9, 23,
6], multi-radio multi-channel [26] and random [15] networks.

In these contexts, the dimension k of the simplices has been stud-
ied for characterizing the pairwise connections among individuals.
Moreover, the centrality of an individual and the cohesion of a net-
work can be expressed in terms of adjacency and incidence relations
between simplices. Other advantages in the use of simplicial com-
plexes are the possibility of detecting and localizing connectivity
holes in a network, and that the notions of homology and blocker
are available.

3.2 Data structures for simplicial complexes
Working with flag complexes, no assumptions can be made on

the dimension of the simplicial complex obtained. For this reason,
the data structure adopted must be dimension-independent. Most
topological data structures for simplicial complexes can only repre-
sent complexes in a specific dimension (generally two or three).

We can identify four dimension-independent data structures com-
monly used in the literature for representing a simplicial complex.

Given a simplicial complex Σ, the IG [11] is a data structure de-
scribing its Hasse diagram [25], i.e., the graphical representation of
the partially ordered set generated by all the simplices of Σ and their
incidence relations. A graph is used for associating the simplices of
a simplicial complex Σ with the nodes of the graph itself while the
boundary and coboundary relations between the simplices of Σ are
associated with its arcs.

As the IG, the Simplex Tree (ST ) [2] encodes all the simplices of
Σ and it has been defined with the purpose of limiting the number
of incidence relations encoded. By using the Simplex Tree the
storage consumption required by encoding the entire graph has been
reduced, though encoding one node for each simplex in Σ does
not guarantee scalability to higher dimensions. To this end, data
structures based on the encoding of only top simplices and vertices
have been shown to be particularly effective.

The Generalized Indexed data structure with Adjacencies (IA∗)
[3], for example, has been shown to be exceptionally compact en-
coding only the vertices and top simplices of a simplicial complex
Σ, plus a subset of its adjacent and boundary relations. For each
top k-simplex τ , the relation with its vertices is encoded as well as
the relations to all the top simplices sharing a face of dimension
k−1 with τ . The Stellar tree [12] enhances this idea encoding ex-
clusively the relation of a top simplex with its boundary vertices
and providing a mechanism to efficiently extract all the other topo-
logical relations at runtime. We refer to the next section for further
details.

4. REPRESENTING A NETWORK ON THE
STELLAR TREE

The practical relevance of our work is strongly connected to the
data structure we have chosen for representing the simplicial com-
plex, the Stellar tree. A Stellar tree [12] is a spatio-topological data
structure that uses a hierarchical structure for representing the em-
bedding space of a simplicial complex. Given a simplicial complex
Σ, a point-region quadtree [27] is created based on the vertices of Σ.
A single parameter, denoted as kv, determines the maximum number
of points indexed by a leaf of the quadtree. Each leaf of the quadtree,
also called leaf block, encodes the indexes of the contained vertices
alongside with the indexes of the top simplices incident in those ver-
tices. This formulation enables the usage of a very simple (indexed)

representation for Σ and defers the decision of the topological data
structure, and its encoded connectivity relations, to runtime.

From a graph to a simplicial complex
When developing a suitable representation for flag complexes com-
puted on social networks, our input complex is a graph describing
the friendship relations between vertices. Starting from this graph,
the top simplices are obtained computing the maximal cliques. The
Stellar decomposition can be used to this purpose for enhancing
performances [16].

The procedure iteratively visits the leaf blocks and applies on
the local graph contained in each leaf the Bron-Kerbosch algorithm
with pivoting [5]. We identify as local graph the set of edges having
at least one vertex contained in the leaf block currently visited and
the relative vertices (both inside and outside the leaf). As described
in [5], following this approach the maximal cliques formed by ver-
tices belonging to adjacent leaf blocks are identified multiple times,
namely one for each leaf block. However, a clique is inserted into
the top simplex array only when we are processing the leaf block
indexing its vertex with maximum index.

5. COMPUTING CENTRALITY INFORMA-
TION FROM THE SIMPLICIAL MODEL

In this section, we define the information we are going to extract
from a flag complex Σ. The most basic value that we are going to
consider is the vertex degree, equivalently defined as the number of
connected edges or the number of adjacent vertices. This notion is
extended in [22] to the analysis of co-authorship networks defining
the degree of a k-simplex. In this context, the degree of a vertex
represents the number of distinct co-authors that collaborated with
him/her.

A simplex represents a set of authors having at least one joint
work together. The simplex degree represents the number of distinct
co-authors who have jointly published with them. In our case, the
relevance of the simplex degree is maintained but its meaning is
different since our network is based on friendship relations. For
each k-simplex σ we have:
• lower degree: number of (k− 1)-simplices contained in σ

(constantly equal to k+1);
• upper degree: number of (k+1)-simplices containing σ ;
• top degree (also called facet degree): number of top simplices

containing σ .
While the upper and lower degrees define a measure for evaluat-

ing the relations between cliques, the facet degree specifically con-
siders relations with the maximal cliques (facets) only. Thus, given
a cluster of friends σ , its lower degree expresses the importance
of the clique in terms of number of individuals in the community.
Dually, the upper degree of σ underlying the importance of the
community σ as the number of individuals Vσ having a friendship
relation with all the vertices in σ . Considering the vertices in Vσ ,
no information on the mutual friendships is provided by the upper
degree. However, this can be retrieved by focusing on the maximal
cliques. The top degree of a simplex σ is defined as the cardinal-
ity of the top simplices in the star of σ (i.e., |Sttop(σ)|), and thus,
corresponds to the number of communities to which all the vertices
of σ belong. The higher the top degree is, the more σ is connected
with other communities in the complex. Since we are retrieving
facets, for each community we already know the connectivity of its
vertices and we can compute how much strong such community is
(lower degree).



5.1 Computing network properties on the
Stellar tree

Once we compute the top simplices on the Stellar tree, as de-
scribed in Section 4, we can extract any other topological relation.
The basic paradigm for using the Stellar tree is to locally process
the simplicial complex in a streaming manner by iterating through
the leaf blocks. For each leaf block b, we extract a local application-
dependent data structure, that is discarded once we have processed
b. This allows for allocating the memory, required for representing
the topological structures, for a single leaf block at a time. More-
over, queries are processed locally and the cost of computing the
topological relations is amortized over multiple accesses while pro-
cessing each leaf block.

The descriptors that we want to explicitly encode are the top and
upper degrees for each vertex. The upper degree will be useful to
evaluate the vertices that have the higher number of friends while
the top degree is used to identify vertices connected to the higher
number of communities. As we explicitly represent the vertices and
the top simplices of Σ, all the degrees can be computed extracting
the top simplices in the star of each vertex. Thus, we have practical
advantages for computing these degrees by using the Stellar tree.

Within each leaf block b, the algorithm iterates through the ver-
tices of the top simplices in b. For each contained vertex v, we
encode the top simplices in Sttop(v) and the edges in St(v). Then,
once we have extracted these local topological relations, we com-
pute the local degrees, and we update accordingly the global ones.
The upper degree of each vertex v is equal to the number of edges
in its star while the top degree of v is the size of its Sttop(v). The
complexity of the algorithm within each leaf block b is linear to the
number of the top simplices in b. Finally, these two integers values
are stored in a global structure and the local topological relations
are discarded before processing the next leaf blocks.

6. SIMPLIFYING THE SIMPLICIAL
MODEL

Simplifying the structure of a social network is a valid approach
for disclosing new insight on the data. Since, we are interested in
modeling the network as a simplicial complex, we need to preserve
the structural information that such complex can provide. A way for
preserving these information is to adopt an homology-preserving
simplification procedure.

Edge contraction is the most common operator for simplifying
simplicial complexes. It has been used in computer graphics and vi-
sualization and more recently in topological data analysis for reduc-
ing the size of higher dimensional simplicial complexes [1]. Given
a simplicial complex Σ, let us consider a pair v1,v2 of its vertices
forming an edge e = v1v2 of Σ. The edge contraction consists of the
collapse of one vertex of e on the other one. Without loss of gener-
ality, in the following we denote v1 as the vertex collapsing on v2
and, consequently, v2 as the surviving vertex. It can be formally de-
scribed as a function mapping a simplex σ of Σ in the simplex µ(σ)
spanned by the vertices of a σ in which vertex v1 has been replaced
by vertex v2. As a result of the edge contraction, all the simplices
in St(e) are removed from Σ and each simplex σ in St(v1)\St(e) is
redirected into St(v2) by mapping σ into µ(σ). Edge contraction
is an operation linear in the number of simplices in St(v1)∪St(v2).

One of the advantages in using the Stellar tree is that of exploiting
the representation based on the top simplices to outperform normal
simplification algorithms. Using the algorithms defined in [16], we
can perform the edge contraction only working on the top simplices
in Sttop(e), i.e., the set of top simplices incident in the edge re-

moved, and in Sttop(v1), i.e., the set of top simplices incident in
the vertex removed with e. The above algorithm successfully re-
duces the size of a simplicial complex Σ but, in general, does not
preserve the homology of Σ. The link condition, introduced in [10]
for a 2- or 3-manifold and extended in [1] to arbitrary simplicial
complexes, defines a constraint for the edge contraction applied to
a simplicial complex Σ for preserving its homology. Given a sim-
plicial complex Σ, an edge e = v1v2 of Σ satisfies the link condition
if and only if Lk(v1)∩Lk(v2) = Lk(e). Again here, we can use the
top simplices for efficiently checking this condition following the
algorithm described in [16].

Based on homology-preserving edge contractions, we develop a
simplification algorithm for geolocalized social networks. Given a
geolocalized social network modeled by a graph G = (V,E), let us
considered the flag complex Σ = Flag(G) of G. The simplification
algorithm consists in performing homology-preserving edge con-
tractions whenever there are edges satisfying the link condition. In
order to maintain the topological structure of a network and, at the
same time, to extract its core information, the simplification process
can be driven by semantic criteria.

Given an edge e = v1v2 of Σ (or, equivalently, of G), we can
label it according with two different weights. Thanks to the GPS
coordinates associated with each vertex of Σ, e can be weighted by
the spatial distance between the geo-spatial positions of its vertices.
Alternatively, we can define a weight based on the list of check-in
associated with each vertex of Σ. For i= 1,2, we denote as Li the set
of the locations at which vi did a check-in. We define the check-in
weight between v1 and v2 as

|L1 \L2|+ |L2 \L1|
|L1∪L2|

This weight assumes values between 0 and 1. Values close to 0
occurs when the two check-in lists are very similar, while values
close to 1 denotes that the two lists are almost disjoint.

Once we have chosen a criterion for assigning a weight to the
edges, the latter are processed in ascending order and contracted
if they satisfy the link condition. Given an edge e = v1v2 to be
contracted, we choose as surviving vertex v2 the one with higher
vertex degree in the original complex Σ.

7. EXTRACTING BLOCKERS FROM THE
SIMPLICIAL MODEL

As underlined in the literature, the notions of homology and
blocker have been pointed out as relevant tools for detecting missed
connections between individuals who could potentially set up a com-
munity. Thus, the detection of the blockers of a simplicial complex
Σ is a key task for the analysis of the network.

Equivalently to the definition in Section 2, a blocker of Σ is a
minimal (w.r.t. inclusion) simplex in the set difference Flag(Σ(1))\
Σ. This ensures that each blocker of Σ is necessarily contained in
a maximal clique of Σ(1) which does not belong to Σ. In order to
reveal the blockers contained in such a maximal clique σ of Σ(1),
the procedure verifies if all the subsets of dimension k− 1 of σ

belong to Σ, otherwise it recursively verifies for each subset τ of σ

of dimension k−1 which does not belong to Σ. By retrieving all the
maximal cliques σ of Σ(1) not belonging to Σ and by executing the
procedure on each of such σ , it is possible to detect all the blocker
of Σ.

Taking in input the maximal clique σ = v1v2v3v4 of the simplicial
complex Σ depicted in Figure 2, the procedure considers all its
subsets of dimension two. Triangles v1v2v3, v1v3v4 do not belong
to Σ, so the procedure is executed on each of them returning that



Figure 2: Some relevant elements of a simplicial complex Σ:
tetrahedron v1v2v3v4 is a maximal clique; triangle v1v2v3 is a
blocker which coincides with a missing simplex of edge e= v1v2.

the two triangles are blockers of Σ.
In real cases, the latter procedure will often analyze maximal

cliques of high dimensions even if the actual blockers have very
low dimensions. Since in the worst case we have to consider all
possible subsets of σ , whose number grows exponentially when the
dimension of σ increases, the fact that the maximal cliques dimen-
sions often assume high values leads to expensive computations.

To overcome this limitation and obtain the blockers of Σ more
efficiently, we execute the algorithm on a collection of subsets of
V of lower dimensions with respect to the ones above considered.
Given a simplicial complex Σ and an edge e = v1v2 of Σ, we de-
note T1 (and similarly T2) as Sttop(v1)\Sttop(e), i.e., the set of top
simplices which are in the star of v1 but not in that of e. We say
that e admits a missing simplex if there exist τ1 in T1 and τ2 in
T2 such that ρ := τ1 ∩ τ2 6= /0 and Sttop(ρ)∩ Sttop(e) = /0. Under
such assumptions, we refer to ρ ∪ e as a missing simplex of e. By
definition, each missing simplex of an edge of Σ does not belong to
Σ.

By considering the edge e = v1v2 in Figure 2, we have that the
set of top simplices T1 and T2 consist of edge v1v3 and of triangle
v2v3v4, respectively. So, since the set of top simplices which are
in the star of both e and v3 is empty, the empty triangle v1v2v3
is a missing simplex of e. The following proposition ensures that
considering the set of missing simplices of the edges of Σ guarantees
the retrieval of the set of blockers of Σ.

PROPOSITION 7.1. Let Σ be a simplicial complex. Then, for
each blocker σ of Σ, there exists a missing simplex containing σ .

PROOF. Given any edge e = v1v2 contained in σ , let us consider
the blocker σ as the disjoint union σ = τ ∪ e. Since σ is a blocker,
we have that, for i = 1,2, the simplex τ ∪ vi belongs to Σ. Let τi be
a top simplex of Σ containing τ ∪ vi. Simplex τi does not contain e
otherwise σ belongs to Σ. By considering ρ := τ1∩τ2, we have that
ρ is non-empty since it contains τ . Further, Sttop(ρ)∩Sttop(e) = /0.
In fact, the existence of a top simplex τ ′ of Σ containing both ρ and
e implies that τ ′ is in the star of σ = τ ∪e leading to a contradiction.
As a consequence, one can claim that ρ ∪ e is a missing simplex of
e containing σ .

Similarly to the maximal cliques of Σ(1) not belonging to Σ, the
missing simplices of the edges of Σ are in Flag(Σ(1)) \ Σ. This
ensures that each missing simplex contains at least one blocker. Dif-
ferently to the maximal cliques, the missing simplices are not, in
general, maximal elements with respect to the inclusion of that set
difference. As we will discuss in Subsection 8.2, the relative low
dimensions of the missing simplices allow to improve the computa-
tional times of the blocker extraction.

Table 1: The table shows the simplification statistics, as the
number of vertices |V |, the number of top simplices |T | and
the dimension d in the initial and in the final simplicial com-
plex, the simplification ratio (%), plus the experimental mem-
ory peaks (expressed in megabytes) obtained by the Star data
structure (star) and by the Stellar tree (tree).

weight d.s. |V | |T | d % mem.

O
C

E
A

N
IA

input complex 1.99K 4.62K 13

geo-dist. star 0.32K 1.78K 10 84 8.20
tree 0.35K 1.87K 11 82 6.73

check-in star 0.33K 2.32K 11 83 8.27
tree 0.36K 1.77K 11 82 6.48

E
U

R
O

P
E

input complex 9.88K 18.4K 12

geo-dist. star 1.25K 7.55K 8 87 23.4
tree 1.42K 7.35K 10 86 16.7

check-in star 1.17K 8.37K 10 88 24.0
tree 1.43K 7.56K 9 86 16.6

N
.

A
M

E
R

IC
A input complex 31.4K 90.3K 18

geo-dist. star 2.78K 52.6K 18 91 97.1
tree 3.37K 47.4K 16 89 56.4

check-in star 2.64K 55.7K 18 92 102
tree 3.37K 48.0K 17 89 60.8

8. EXPERIMENTAL RESULTS
In this section, we evaluate the performances of our approach on

real geolocalized social networks. We have chosen the BRIGHTKITE
network from the SNAP Datasets Collection repository [19]. Given
this dataset, we have selected three sub-networks, localized in Eu-
rope, Norther-America and Oceania continents. On top of these net-
works, we generate the three corresponding flag complexes using
the algorithm described in Section 4. These datasets contains from
2 to 30 thousands points, leading to simplicial complexes from 12
to 17 dimensions. Further, as the clique-based blocker computation
procedure cannot be completed on the above simplicial complexes,
we use also a smaller dataset based on the Souther-America conti-
nent, that has 6 hundreds points, leading to 9 hundreds top simplices
in at most 6 dimensions.

The Stellar tree implementation is compared against a global
structure, called in the following Star data structure. The Star data
structure explicitly encodes, for each top simplex, the boundary
relation to its vertices and, for each vertex v, the top simplices in
the star of v. These are the two minimal connectivity relations
for efficiently execute the simplification procedure. The hardware
configuration used for these experiments is an Intel i7 3930K CPU
at 3.20Ghz with 64 GB of RAM. The CPU can handle up to 12
threads in parallel.

8.1 Homology-preserving simplification
In this subsection, we evaluate the statistics of the Stellar tree and

the global structure while simplifying a simplicial complex. Table
1 shows the compression factors and the memory peaks.

The simplification sequence that we obtain from the Stellar tree
and on the Star data structure is generally different. The reason is
that the Stellar tree uses a local priority queue for organizing the
simplifications inside each leaf block while the global data struc-
ture only uses a global queue. We can notice from our results that
the simplification order influences the number of contractions ex-
ecuted, and the Stellar tree always execute slightly fewer simpli-
fications than the global data structure. The simplification ratio
is, on average, around 80-90% of the initial vertices. Conversely,



Table 2: Comparison between clique-based and missing-based
approaches. Table shows, for each dataset, the number of
cliques, missing simplices and blockers (columns num), plus
their maximum dimension (columns d). Columns time indicate
timings of blocker extraction.

weight cliques-based missing-based blockers

num d time num d time num d

S
A geo-dist. 0.34K 8 6.07s 2.72K 6 0.05s 1.06K 4

check-in 0.32K 8 1.25s 2.18K 6 0.04s 0.94K 3

O
C geo-dist. 1.80K 12 >12h 24.9K 10 21.5s 6.10K 4

check-in 2.14K 17 >12h 90.4K 12 1.14h 7.10K 3

E
U geo-dist. 11.0K 13 >12h 82.9K 9 13.8s 29.2K 4

check-in 14.0K 13 >12h 133K 11 3.01m 31.6K 3

the dimension of the original complex is not significantly reduced.
Moreover, the simplification ratio is rather similar also considering
a distance-based or a check-in-based simplification, meaning that
the homology preservation constraint is not significantly influenced
by the weights associated with the network edges.

Finally, analyzing the memory peak, we can observe that the
Stellar tree is always more compact than the Star data structure,
requiring from 60% to 80% of the memory.

8.2 Blocker computation
In this subsection, we consider the blockers extraction evaluating

the performances of the two strategies described in Section 7. We
call clique-based strategy the approach that considers the set of the
maximal cliques of Σ(1) not belonging to Σ. Conversely, we call
missing-based the approach considering the missing simplices of
the edges of Σ.

Table 2 shows the experimental results obtained indicating, for
both maximal cliques and blockers, their number and their maxi-
mum dimension. Since the flag complex associated with a network
is free of blockers, experiments involve datasets obtained after geo-
distance or check-in based simplifications. We can notice that the
number of missing simplices is always relevantly higher than the
number of maximal cliques (from 7 to 42 times higher). Though, the
missing-based approach is always extremely faster than the clique-
based, as in most of the cases, the latter is killed after 12 hours of
computation.

The blockers extraction slows down exponentially with the in-
creasing of the dimension of the simplices given as input, and we
observe that the maximum dimension of the candidates found with
the missing-based approach is generally lower than the dimension
of the candidates found with the clique-based approach. Further
evidence of this trend can be found by comparing the distributions
of the maximal cliques and of the missing simplices of the complex.

As depicted in Figure 3, the experimental evaluations highlight
that, in practical cases, the distribution of maximal cliques is nearly
uniform across the dimensions, while the distribution of the miss-
ing simplices, and the distribution of the blockers, are concentrated
mainly in low dimensions. As discussed in Section 7, the procedure
execution is time-consuming on simplices of high dimension, while
on simplices of low dimension is pretty fast (constant-time for sim-
plices of dimension 2). For this reason, in spite of the higher number
of simplices to be analyzed, the concentration of the missing sim-
plices in low dimensions ensures that the missing-based strategy is
computationally efficient compared to the clique-based approach.
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Figure 3: Comparison between the distributions of the maxi-
mal cliques, the missing simplices and the blockers of the sim-
plicial complex obtained after the geo-distance based simplifi-
cation of the EUROPE dataset.

Table 3: The table shows the network degrees of the input com-
plex and of the simplified ones, following the geo-distance or the
check-in based, with a Star data structure (star) or the Stellar
tree (tree).

weight d.s.
1-skeleton degrees

vertex top

vertices edges avg max avg max

O
C

E
A

N
IA

input complex 1.99K 6.12K 6.16 0.20K 4.79 0.99K

geo-dist. star 0.32K 2.32K 14.6 0.13K 3.83 0.46K
tree 0.35K 2.21K 12.6 0.11K 4.20 0.46K

check-in star 0.33K 2.63K 15.9 0.16K 5.01 0.78K
tree 0.36K 2.16K 12.0 0.13K 4.04 0.44K

E
U

R
O

P
E

input complex 9.88K 26.5K 5.37 0.24K 3.50 0.97K

geo-dist. star 1.25K 9.75K 15.6 0.24K 3.30 0.55K
tree 1.42K 9.23K 13.0 0.21K 3.16 0.50K

check-in star 1.17K 10.9K 18.5 0.19K 3.76 0.69K
tree 1.43K 9.34K 13.1 0.26K 3.24 0.59K

N
.

A
M

E
R

IC
A input complex 31.4K 112K 7.17 0.85K 4.34 10.4K

geo-dist. star 2.78K 60.5K 43.5 1.00K 4.11 6.39K
tree 3.37K 55.3K 32.8 0.97K 3.28 3.73K

check-in star 2.64K 63.6K 48.1 0.78K 4.54 7.92K
tree 3.37K 55.5K 32.9 0.94K 3.41 4.49K

8.3 Analyzing the network
In this subsection, we report the values obtained by computing

the degrees, introduced in Subsection 5. The statistics are reported
in Table 3 indicating the variation of the 1-skeleton between the ini-
tial and the simplified complexes, and showing how the vertex and
top degrees are affected by the homology-preserving simplification
process.

We can observe that the 1-skeleton is highly reduced by the sim-
plification process, and the reduction ratio of the edges is propor-
tional to the one of the vertices of the complex. Comparing the
vertex degrees of the initial and simplified complex, we notice that
the average of the simplified complex at least triples the initial aver-
age, meaning that the remaining vertices communities are strongly
connected with the other communities in their neighborhood. This
trend can be observed also considering the maximal values that,
with the exception of OCEANIA dataset, remains high.

Considering the variation of the top degrees, we can note, from
the value 0 of the minimum degree in the final complex (not shown
in the Table), that all the datasets have more than one connected
component. Notice that, if a connected component has no homology
cycles it is correctly reduced to a single point by the simplification.



Figure 4: For the OCEANIA dataset (focus on Australia), ver-
tices are depicted with increasing dimension according to the
number incident top simplices and colored (from green to red)
depending on the number of adjacent vertices.

Visualization-aided network analysis
The information extracted from the simplicial complex are particu-
larly useful when coupled with visualization tools. In Figure 4, we
are focusing on Australia showing a dot for each vertex (edges are
avoided for clarity). Dots are represented with increasing size, de-
pending on the number of top simplices incident in each vertex, and
colored (from green to red) depending on the number of adjacent
vertices (upper degree).

The first information let us discriminate the different clusters
grouped in the main cities. While the color underlines the amount
of existent connections of a vertex, its size represents how many of
these adjacent vertices are connected with each other and if they rep-
resent a strongly connected community. Looking at Figure 4 (left),
for example, we can notice that in Melbourne we have a strong com-
munity mainly centered in a big vertex, in Perth the connectivity of
the vertices is lower but we still have some connected communities
while in Brisbane and Sydney the number of top simplices is lower
(and thus the strength of the community is lower).

Going a step further, we also want to analyze how the simplifi-
cation process influences the structure of the network. Using the
geo-distance based simplification we notice two opposite changes in
the network connectivity depending on the properties of the vertices.
If the vertex was originally strongly connected and belonging to big
clusters (i.e., the big red dot in Melbourne), then its neighborhood
will be strongly simplified and the number of adjacent vertices will
reduce drastically. An example can be seen in Figure 4 (lower right).
Here, we are depicting only the vertex chosen for the analysis (big
red vertex) and those connected to it at the end of the simplification
process (small red dots). The vertex was connected to 201 vertices
and 966 top simplices at the beginning of the process but now it is
connected to only 5 vertices.

Dually, we consider the case where the vertex is loosely con-
nected (for example, the green vertex in the higher right figure). At
the beginning of the simplification process, it was connected to only
12 vertices, but after the simplification, it results connected to 96
different vertices.

This opposite behavior is a natural consequence of using the
blockers to inhibit simplifications. When we are processing strongly
connected communities, the amount of top simplices is also high
and it is not possible to generate blockers. Conversely, processing
vertices that are decently connected but not in the center of the
network will generate much more blockers. The results obtained
can actually be used to avoid that the big communities incorporate
the smaller ones along the simplification process. Using the former
approach we are able to identify the relations depicted in Figure 5.

For the entire dataset (and for the zoomed images of the three
Australian cities), we show with bigger dots the vertices surviving

Figure 5: For the OCEANIA dataset (with a focus on three
cities), the effects of the simplification process are shown de-
picting the correlation between vertices that survived the sim-
plification process from those that have been contracted during
it.

the simplification process. These are then colored according to the
area they belong to on the map. Dually, smaller dots represent the
vertices contracted (and removed) inside one bigger dot. These are
marked using the color of the vertex that survives the contraction.
We can clearly see that even if some vertices are simplified with
vertices belonging to the same region/city, there are actually many
vertices that have been contracted with those far away from their
original city.

9. CONCLUDING REMARKS
In this paper, we have presented a new approach for analyzing

geolocalized social networks based on simplicial complexes. Start-
ing from a graph representation of the original network, a simplicial
complex is obtained as a collection of all the maximal cliques ex-
tracted from the graph.

The latter representation incorporates all the information pro-
vided by the original graph in adjunct to a qualitative description
of the structural properties of the network. By means of the sim-
plicial complex, we have been able to represent relations between
the vertices of the network and their communities. Moreover, us-
ing an homology-preserving simplification process, we have been
able to identify missing friendships that were not represented in
the original graph. This has been done by studying the blockers,
missing simplices representing the homology cycles of the original
complex.

We are developing a fully interactive visualization tool coupling
the information extracted from the original graph and those ex-
tracted from the simplicial complex. Data extracted from the two
representations will provide complementary information for lead-
ing a user to the salient parts of the network. The final aim of this
analysis is to incorporate this process in a friendship-suggestion
procedure for empowering smaller communities of the network.

To achieve such a result, a fundamental step will be encoding
the sequence of simplifications in a multi-resolution model. Based
on the latter, the user will gain control on the resolution of the
simplicial complex and will be able to study the evolution of the
network interactively.

We are also considering the extension of this framework to the
analysis of time-varying social networks. In this case, the proposed
degrees are still computable but more involved tools could be prefer-
able for studying the evolution of data over time. Specifically, we



are considering the use of the persistent homology as a replacement
for the blockers.
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