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Abstract—We consider the problem of efficiently computing
homology with Z coefficients as well as homology generators
for simplicial complexes of arbitrary dimension. We analyze,
compare and discuss the equivalence of different methods based
on combining reductions, coreductions and discrete Morse theory.
We show that the combination of these methods produces theo-
retically sound approaches which are mutually equivalent. One of
these methods has been implemented for simplicial complexes by
using a compact data structure for representing the complex and
a compact encoding of the discrete Morse gradient. We present
experimental results and discuss further developments.

I. INTRODUCTION

Recently, the problem of computing the topological features

of a shape has drawn much attention because of its applications

in several disciplines, including shape understanding, shape

retrieval, and finite element analysis. Topological features

provide global quantitative and qualitative information about

a shape, such as the number of its connected components,

and the number of holes and tunnels. These features are

especially important in the analysis of high-dimensional data,

where pure geometric tools are usually not feasible.

The existing literature about homology computation

focuses mainly on the computation of simplicial homology

with Z2 coefficients. This topological invariant is simpler to

compute than the classical integer homology, but it fails in

providing the torsion part of the homological information,

present, for instance, in a Klein bottle. We are interested

in investigating tools and strategies to efficiently compute

simplicial homology for arbitrary simplicial complexes

of any dimension, which provide the whole homological

information, including Betti numbers, torsion coefficients

and homology generators. For simplicial complexes in high

dimensions, torsion coefficients and homology generators

are definitely relevant to deeply understand the shape of any

high-dimensional data. A significant example concerns an

application to chemistry and biology [1]: the conformation

space of a molecule has been analyzed from a dataset in R
72

and it has been found through homological techniques that it

has the geometry of a 2-dimensional surface composed of a

sphere and a Klein bottle.

One way of facing the complexity of the homology

computation problem is through simplification of the

simplicial complex. In the literature, several techniques

have been developed to reduce the size of the complex

while preserving its homology. Such techniques are based

on reductions or coreductions of pairs of simplices, or,

equivalently, they construct a chain complex with a reduced

number of cells and with the same homology as the original

one, the discrete Morse complex. Our first contribution

in this work is a comparison and an analysis of different

methods combining discrete Morse theory and reductions and

coreductions for homology computation. Our analysis has

led us to consider new simplification methods interleaving

reductions and coreductions and to show the theoretical

equivalence of these approaches.

One of the main challenges in homology computation is

dealing with complexes of large size and dimension. Currently,

available implementations work on cubical complexes of

large size, or on simplicial complexes of limited size. In

this latter case the simplicial complex needs to be encoded

through an incidence graph implementing the Hasse diagram

which tends to be verbose and does not scale well with size

and dimension. Here, we present a first implementation of

one of the simplification methods by using a compact data

structure encoding only the top simplices of the complex and

a compact encoding of the discrete Morse gradient, and we

present an experimental analysis and comparison.

The remainder of the paper is organized as follows. Sec-

tion II contains some background notions, while Section III

contains an overview of existing work and software tools.

Section IV discusses the reduction-based and coreduction-

based algorithms and shows the equivalence of these methods

and of combinations of the two operators. Section V describes

our implementation of the coreduction-based algorithm based

on a compact encoding of the simplicial complex, while

Section VI presents some experimental results. Finally, Section

VII draws some concluding remarks and discusses future

works.
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II. BACKGROUND NOTIONS

In this section, we introduce some background notions

which are at the basis of our work, namely simplicial com-

plexes and simplicial homology, discrete Morse theory, reduc-

tions and coreductions.

A. Simplicial complexes and simplicial homology

A simplex of dimension k (briefly a k-simplex) is the convex

hull of k+1 affinely independent points. Given a k-simplex σ,

any simplex τ , which is the convex hull of a non-empty subset

of the points generating σ, is called a face of σ. Conversely,

σ is called a coface of τ . A simplicial complex Σ is a finite

set of simplices such that each face of a simplex in Σ belongs

to Σ, and each non-empty intersection of any two simplices

in Σ is a face of both.

Given a simplicial complex Σ, it is possible to define

the chain complex associated with Σ, denoted as C∗(Σ) :=
(Ck(Σ), ∂k)k∈Z, where Ck(Σ) is the free Abelian group

generated by the k-simplices of Σ, and ∂k : Ck(Σ) →
Ck−1(Σ) is a homomorphism, called boundary map, which

encodes the boundary relations between the k-simplices and

the (k − 1)-simplices of Σ such that ∂k∂k+1 = 0. We denote

as Zk(Σ) := ker ∂k the group of the k-cycles of Σ and as

Bk(Σ) := Im ∂k+1 the group of the k-boundaries of Σ. The

kth homology group of Σ with coefficients in Z is defined as

Hk(Σ) := Hk(C∗(Σ)) =
Zk(Σ)

Bk(Σ)

Given an arbitrary Abelian group A, we can define the kth

homology group with coefficients in A of Σ as Hk(Σ;A) :=
Hk(C∗(Σ) ⊗Z A), where ⊗Z is the tensor product of

Abelian groups. If we consider A = Z2, C∗(Σ) ⊗Z Z2 :=
(Ck(Σ) ⊗Z Z2, ∂k ⊗Z Z2)k∈Z is the chain complex whose

groups Ck(Σ) ⊗Z Z2 are just the Z2-vector spaces generated

by the k-simplices of Σ and the homomorphisms ∂k ⊗Z Z2

are the boundary maps ∂k of Σ considered modulo 2.

By the theorem of structure for finitely generated Abelian

groups [2], homology groups of a simplicial complex Σ can

be expressed as

Hk(Σ) ∼= Z
βk〈c1, · · · , cβk

〉 ⊕ Zλ1
〈c′1〉 ⊕ · · · ⊕ Zλpk

〈c′pk
〉

with λi+1 | λi and with λi non-invertible. We call βk the

kth Betti number of Σ,
⊕pk

i=1 Zλi the torsion part of Hk(Σ)
and c1, · · · , cβk

, c′1, · · · , c′pk
the generators of Hk(Σ). For

each k, the kth Betti number βk measures the number of

independent, non-bounding, k-cycles in Σ. In dimension 0, β0

counts the number of connected components of the complex,

in dimension 1, its tunnels and its holes, in dimension 2, the

shells surrounding voids or cavities, and so on.

It can be proven (see [3], Chapter X) that, for simplicial

complexes embeddable in R
3, each homology group is free,

and, thus, its torsion part is trivial. For this reason, the Z-

homology groups of a simplicial complex Σ embeddable in

R
3 can be retrieved by just computing the homology of Σ

with Z2 coefficients.

B. Discrete Morse theory

One important tool for simplifying the homology compu-

tation of a simplicial complex is discrete Morse theory [4],

[5]. Given two simplices σ, τ of Σ, we write τ ≺ σ if τ is a

face of σ and dimσ = dimτ + 1. A simplicial complex Σ is

equipped with a function f : Σ→ R, called a discrete Morse
function if, for every simplex σ in Σ,

• c+(σ) := #{ρ 	 σ | f(ρ) ≤ f(σ)} ≤ 1,

• c−(σ) := #{τ ≺ σ | f(τ) ≥ f(σ)} ≤ 1.

It is easy to show (see [4], Lemma 2.5) that, for a discrete

Morse function, c+(σ) and c−(σ) cannot be simultaneously

equal to 1. A simplex σ in Σ is critical if c+(σ) = c−(σ) = 0.

A discrete vector field V on Σ is a collection of pairs of

simplices (τ, σ) ∈ Σ × Σ such that τ ≺ σ and each simplex

of Σ appears in at most one pair in V .

A discrete Morse function f : Σ → R induces a discrete

vector field V = {(τ, σ) ∈ Σ × Σ | τ ≺ σ and f(τ) ≥ f(σ)}
called the gradient vector field of f , on Σ. A pair (τ, σ) ∈ V
can be viewed as an arrow from τ to σ.

Given a discrete vector field V , a gradient path from τ̃ ∈ Σ
to τ ∈ Σ is a sequence of simplices of Σ

τ̃ = α0, β0, α1, β1, α2, · · · , αr−1, βr−1, αr = τ

where, for i = 0, · · · , r − 1, αi = αi+1, (αi, βi) ∈ V and

αi+1 ≺ βi. We say that such a path is a non-trivial closed
path if r > 0 and α0 = αr.

Theorem 1 (Thm. 3.5 in [5]): A discrete vector field V is

the gradient vector field of a discrete Morse function if and

only if there are not non-trivial closed paths.

The discrete Morse complex associated with Σ is a chain

complex M∗ := (Mk, ∂̃k)k∈Z, where groups Mk are gen-

erated by the critical k-simplices of the function f and the

boundary maps ∂̃k are obtained by following the gradient

vector field of f . For each Abelian group A, we have that

Hk(Σ;A) ∼= Hk(M∗;A) (see [4], Thm. 8.2).

A gradient vector field can be built without providing

a discrete Morse function on a simplicial complex Σ by

considering an acyclic matching of Σ.

Let Σ be a simplicial complex. A matching of Σ consists

of a partition of Σ into three sets A, K, and Q along with a

bijection w : Q → K, such that, for each τ ∈ Q,

< ∂w(τ), τ >= ±1,
where, given two simplices σ and τ , < ∂σ, τ > denotes the

coefficient of τ in ∂σ. We denote this decomposition as (A, w :
Q → K).

Given a matching of Σ, we define a relation ≤ on Q
by transitive closure as follows. Let us consider two distinct

elements τ, τ ′ ∈ Q;

if < ∂w(τ), τ ′ > = 0 then τ ′ < τ.

A matching of Σ is acyclic if ≤ is antisymmetric, and, thus,

it defines a partial order on Q.
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In order to formalize the relationship among these notions

and discrete Morse theory, it is sufficient to note that, if

we define V := {(τ, w(τ))|τ ∈ Q}, the condition on the

acyclicity of the matching is equivalent to the requirement that

V does not contain non-trivial closed paths. Then, by Theorem

1, we are able to conclude that a matching is acyclic if and

only if it generates a gradient vector field.

C. Reductions and coreductions

In this subsection, we present two classical homology-

preserving operators introduced in [6], namely reduction and

coreduction. Such operators enable reducing the size of a sim-

plicial complex without affecting its homology. A reduction
corresponds to a deformation retraction of a simplex, which is

face of only another simplex onto the complex. The problem

is that, in most situations, the available reductions are quickly

exhausted. In order to overcome this issue, coreductions have

been introduced, where a coredution can be viewed as the

dual operation with respect to a reduction. A coreduction is

not feasible on a simplicial complex, while it is available in

the context of S-complexes [6]. Since we will work only with

simplicial complexes, for the purpose of this work we consider

an S-complex as a simplicial complex in which some simplices

may be not present even if their cofaces are in the complex.

Let Σ be an S-complex and let σ be a simplex of Σ. We

call the following sets of simplices respectively (immediate)
boundary and (immediate) coboundary of σ with respect to Σ

bdΣ σ := {τ ∈ Σ | τ ≺ σ},
cbdΣ σ := {ρ ∈ Σ | ρ 	 σ}.

Let Σ be an S-complex and let (σ, τ) be a pair of elements

of Σ such that < ∂σ, τ >= ±1. A pair (σ, τ) is a reduction
pair if cbdΣ τ = {σ}; it is a coreduction pair if bdΣ σ = {τ}.

In a chain complex C∗(Σ) associated with a simplicial

complex Σ, the removal of a reduction, or of a coreduction,

pair (σ, τ) produces a chain complex C ′∗ in which chain groups

are generated by the simplices of Σ different from σ or τ , and

the boundary maps are suitable restrictions of the boundary

maps of C∗(Σ).
It can be proven that the removal of a reduction, or of a

coreduction, pair preserves the homology groups [6]. Further-

more, one can retrieve the homology generators of Σ from the

homology generators of C ′∗ by computing their images under

a suitable isomorphism map [7], [8].

III. RELATED WORK

The classical approach to the computation of the homology

of a simplicial complex of finite dimension is based on

the Smith Normal Form (SNF) reduction [9] applied to the

boundary matrices describing the boundary maps ∂k. Although

this method is theoretically valid in any dimension, it has some

inherent limitations due to the size of the boundary matrices

and to the high complexity of the reduction algorithm,

which is super-cubical in the number of the simplices of the

complex. Another well-known problem is the appearance of

large integers during reduction [10]. In the literature, several

optimizations of the SNF algorithm have been developed.

Stochastic methods [11] are efficient on sparse integer

matrices, but they do not provide the homological generators.

Deterministic methods [12], [13] perform the computations

modulo an integer chosen by a determined criterion, but the

information about torsion coefficients is lost with this strategy.

Another way to improve computation times is to reduce

the size of the input complex without changing its homology,

by applying iterative simplifications, thus computing the

homology when no more simplifications are possible. Some

of these approaches are based on reductions and coreductions
[6]–[8], others simplify the simplicial complex via acyclic
subspaces [14], [15]. A similar approach for reducing the

size of a complex without affecting its homology is based

on the notion of tidy set [16]. Another class of reduction

approaches [17]–[19] is based on discrete Morse theory
[4], [5], since a discrete Morse complex built from a given

cell complex has the same homology as this latter but with

fewer cells. Also, decomposition-based approaches have been

proposed [20], [21], which relate the homology of a simplicial

complex to the homologies of its sub-complexes, i.e., the

sub-components of the input complex and their intersections.

In [22], a hierarchical representation for a cell complex

based on homology-preserving operators has been defined

and implemented to efficiently compute the homology of

the complex and extract its homology generators at different

adaptive resolutions.

Several software tools for computing homology, mostly for

cubical complexes and for persistence homology [23], [24],

have been developed and distributed in the public domain.

For persistent homology, we can mention Dionysus [25], CAM
[26], and SimpPers [27]. These tools work on Z2 coefficient

homology and do not provide homology generators. The soft-

ware library [28] contains the implementation of simplification

algorithms based on reduction and coreduction operations.

Perseus [29] is an implementation based on discrete Morse

theory, and performs both homology and persistent homology

computations. Most of these tools compute the Betti numbers,

but not the torsion part, and the homology generators; the

majority of them have been developed for cubical complexes,

while the ones that deal with simplicial complexes use verbose

data structures for encoding them like the incidence graph.

Recent work on computing persistence homology based on

annotations uses also the incidence graph for efficiency [26],

[27].

IV. DISCRETE MORSE COMPLEXES THROUGH

REDUCTIONS AND COREDUCTIONS

A. Using coreduction sequences and reduction sequences

In this subsection, we describe two approaches which

combine simplification operators and discrete Morse theory.

Each algorithm for building a discrete Morse complex of

a simplicial complex Σ consists of two steps. In the first
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step, a gradient vector field of a discrete Morse function

is built by using simplification operators. The second step

computes the discrete Morse complex by following the

gradient vector field. The two algorithms described here

perform either sequences of coreductions or of reductions

to obtain an acyclic matching and, thus, a gradient vector field.

The first approach [18], that we call the coreduction-based
algorithm, is based on the construction of an acyclic matching

on a simplicial complex Σ by using coreduction pairs and

removals of free simplices, where a free simplex is a simplex

with an empty boundary. To obtain an acyclic matching

(A, w : Q → K) of Σ, the approach in [18] initializes first

sets A, Q, K and map w as null. Let us denote as Σ′ the set

of non-excised simplices of Σ and initialize it as Σ. While Σ′

admits a coreduction pair, the algorithm excises a coreduction

pair (σ, τ) from Σ′: simplices σ and τ are added to sets K
and Q, respectively, and w(τ) is defined to be σ. When no

more coreduction is feasible, a free simplex is excised from

the complex and inserted in the set A of the critical simplices.

The algorithm repeats these steps until no coreduction can be

performed and set Σ′ is empty.

The other approach [30], that we call the reduction-based
algorithm, is based on the construction of an acyclic matching

on a simplicial complex Σ by using reduction pairs and

removals of top simplices, where a top simplex is simplex

whose coboundary is empty. This method is dual with respect

to the coreduction-based algorithm. To obtain an acyclic

matching (A, w : Q → K) of Σ, the algorithm follows the

same pattern as the previous one, but it removes reduction

pairs and top simplices instead of coreduction pairs and free

simplices. While the set of non-excised simplices Σ′ admits a

reduction pair, the algorithm excises a reduction pair from Σ′

and suitably updates sets K, Q and function w by adding σ
to K, τ to Q and setting w(τ) = σ. When no more reduction

is feasible, a top simplex is excised from the complex and

inserted in the set A of the critical simplices. Then, the

algorithm repeats this process until the set Σ′ of the remaining

simplices of Σ is empty.

In both cases, it has been proved that the matching (A, w :
Q → K) produced on Σ is actually acyclic.

B. Equivalence of reduction, coreduction and interleaved se-
quences

In this section, we prove the equivalence between the

coreduction-based and the reduction-based methods and we

introduce another class of methods which could operate re-

ductions and coreductions in an interleaved way.

Proposition 1: Given a simplicial complex Σ and the acyclic

matching on it produced by a reduction-based algorithm, it

is always possible to obtain the same matching (and, thus,

the same discrete Morse complex) with a coreduction-based

algorithm. The reverse is also true.

Proof: We just give a sketch of the proof. For brevity,

we show that the acyclic matching produced by a reduction-

based algorithm on Σ can be obtained with a coreduction-

based algorithm. Given a simplicial complex Σ, consider the

ordered sequence of reduction pairs and top simplices removed

during the execution of a reduction-based algorithm. It can

be proved that, considering the same sequence but applying

it in the reverse order, it represents for Σ a sequence of

coreduction pairs and free simplex removals. Furthermore,

suitably reordering this reverse sequence of operators we can

guarantee that the removal of a free simplex can be performed

only if no coreduction pair is feasible. In this way, a sequence

compatible with a coreduction-based algorithm is obtained.
Another method to build a matching on a simplicial complex

is to execute removals of reduction and coreduction pairs in an

interleaved way. Here, we prove that such class of approaches

produces an acyclic matching and that all interleaved methods

are equivalent.
Proposition 2: Given a simplicial complex Σ, the matching

(A, w : Q → K) produced by any algorithm, which uses only

reduction pairs, coreduction pairs, removals of top simplices

and of free simplices, is acyclic.
Proof: We just give a sketch of the proof. By Definition

of reduction and coreduction, it is immediate to prove that

the proposed algorithm produces a matching of Σ. In order

to conclude the proof, we have to show that the matching is

acyclic i.e., that ≤ is a partial order on Q. Consider set Q
as built in any intermediate step of the proposed algorithm

and let τ be the latest element inserted in Q. The following

properties, that can easily shown, allow us to conclude that

the order defined on Q is partial:

1. τ is a maximal element with respect to the elements

already inserted in Q originating from a coreduction pair;

2. τ is a minimal element with respect to the elements

already inserted in Q originating from a reduction pair.

Having proved that any possible interleaved method leads to

an acyclic matching, we are now interested in understanding

if these different approaches could produce equivalent results

or not. First at all, we claim the following useful result.
Remark 1: In an algorithm for constructing an acyclic

matching, which uses just reduction pairs, coreduction pairs,

removals of top simplices and removals of free simplices,

each coreduction pair and free simplex removal cannot make

a reduction pair feasible and also each reduction pair and top

simplex removal cannot make a coreduction pair feasible.
Proposition 3: Any two algorithms which build a match-

ing by using reduction pairs, coreduction pairs, removals of

top simplices, only if no reduction is feasible, and of free

simplices, only if no coreduction is feasible, are equivalent.

More precisely, given a simplicial complex Σ and the acyclic

matching on it produced by one of these algorithms, it is

always possible to obtain the same matching (and, thus, the

same discrete Morse complex) with the other algorithm and

vice versa.
Proof: We prove that the acyclic matching produced by

an algorithm by using just reduction pairs, coreduction pairs,

removals of top simplices, only if no reduction is feasible,
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and of free simplices, only if no coreduction is feasible, on a

simplicial complex can be also obtained with a coreduction-

based algorithm. Let Σ be a simplicial complex and consider

the ordered sequence of reduction pairs, coreduction pairs,

top simplices and free simplices performed by the interleaved

algorithm. By Remark 1, we can suitably order such sequence,

moving all the coreduction pairs and the free simplices at

the beginning, thus creating a new sequence equivalent to the

previous one. We apply to the last part, composed only of

reduction pairs and top simplices, of this new sequence the

same sorting strategy proposed in Proposition 1 to transform

a sequence originating from a reduction-based algorithm to a

sequence compatible with a coreduction-based algorithm, and

in this way we obtain the thesis.

From both an application and a theoretical point of view,

it is interesting to find a method to build a gradient vector

field which minimizes the number of critical simplices. The

previous results show that all the proposed methods are equiv-

alent from a theoretical point of view and the use of different

matching operators (such as reduction and coreduction pairs),

or the combination of more than one, does not actually affect

the number of resulting critical simplices.

V. COREDUCTION-BASED ALGORITHM FOR HOMOLOGY

COMPUTATION ON A SIMPLICIAL COMPLEX

A. A compact data structure for a simplicial complex

The data structure we used for encoding the simplicial

complex is an adjacency-based data structure, called the

Generalized Indexed data structure with Adjacencies (IA*)
[31]. The IA* encodes all vertices and top simplices in a

simplicial d-complex Σ. For each top simplex σ of dimension

k, it encodes the vertices of σ and all the top simplices of

dimension k (k − 1)-adjacent to σ. For each vertex v, it

encodes all the top 1-simplices incident in v and one top

(k+1)-simplex for each k-connected component in the set of

simplices incident in v. Moreover, the data structure encodes

a partial coboundary relation for each (k− 1)-simplex on the

boundary of more than two top k-simplices. It has been shown

in [32] that the IA* data structure is much more compact that

the Incidence Graph (IG), which is the implementation of the

Hasse diagram.

B. Compact encoding of the gradient vector field

The encoding of the gradient vector field is associated

only with the top simplices. Each top k-simplex σ encodes

a bitvector grad of length
∑k

i=1

(
k+1
i+1

)
(i+ 1) representing all

the possible pairings on its boundary. If two paired simplices

ν and τ are both on the boundary of σ, the resulting pair will

be encoded in the bitvector of σ.

Let j and l (with j + 1 = l) be the dimensions of ν and τ ,

respectively. Let start =
∑k

i=l+1

(
k+1
i+1

)
(i+ 1), be posν the

position of ν on the boundary of τ and posτ the position of

τ on the boundary of σ. The bit, set for pair ν and τ , is in

the position start+ (posτ (l + 1)) + posν .

For efficiency, we store an additional bitvector, denoted as

paired(σ), for each top simplex σ. paired(σ) encodes, for

Fig. 1: Descending and ascending traversals used during the

computation of the V-path connecting e and t.

each simplex τ in the boundary of σ, whether τ is paired (or

not). Using such bitvector, we are not forced to look outside

σ for testing if τ can be paired or not.

C. Homology computation

1) Computing the gradient vector field: The coreduction-

based algorithm is an implementation of the one introduced in

[18] and described in IV-A on a simplicial complex encoded

with an IA* data structure. Starting from the simplices of lower

dimension, all possible coreductions are applied to build a

gradient vector field V incrementally. In the first step, a vertex

v is declared as critical in V . Working on the top simplices

on the coboundary of v, all the 1-simplices eligible for a

coreduction are paired in V . The algorithm then moves to

the top simplices on the coboundary of the new paired sim-

plices. Once all the possible 1-simplices have been paired, the

working dimension is increased by one. Generally speaking,

if k is the working dimension, all k-simplices are paired in

V using valid coreductions. Once all available coreductions

have been performed, if there are unpaired (k − 1)-simplices

in Σ, one of them is declared as critical in V and, if there

are new coreductions available, they are performed. Once all

the k-simplices have been paired, the working dimension is

increased by one. When all the simplices have been paired or

declared as critical, the algorithm ends.

2) Extracting boundary maps and homology generators:
Here, we describe how we retrieve homology with Z coeffi-

cients and homology generators for a simplicial complex Σ of

arbitrary dimension. Once a gradient vector field V on Σ has

been computed, we can easily retrieve its homology groups.

In order to compute the homology of Σ with Z coefficients,

we have to compute the boundary map ∂̃k : Mk → Mk−1

of the discrete Morse complex M∗ associated with an acyclic

matching built on Σ, i.e., we have to count the multiplicity

of each gradient path between two critical simplices. The

gradient vector field is visited with a descending traversal.

Starting from a critical k-simplex σ, all the (k− 1)-simplices

in the boundary of σ are selected and, among them, only the

(k−1)-simplices paired with a k-simplex different from σ are

considered. From such k-simplices, a breadth-first traversal

continues until all the V -paths starting from σ have been

visited. Then, for each critical (k − 1)-simplex τ , a dual

ascending traversal is performed visiting only those simplices

marked during the descending one. This results in extracting
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Dataset d n n0 ntop

Buddha 2 3.2M 0.54M 1.08M
Elephant 2 9.2M 1.5M 3.07M
Fertility 2 1.4M 0.24M 0.48M

Skull 3 0.75M 37K 0.15M
Neghip 3 2.1M 93K 0.48M
7Klein 7 0.1M 0.11K 0.6K

9Sphere 9 0.22M 2.0K 911

TABLE I: Simplicial complexes used. Column d indicates the

dimension of the complex, n indicates the total number of

simplices, n0 the number of vertices and ntop the number of

top simplices.

the V -paths between two critical simplices. As an example, we

show in Figure 1 the two steps performed for computing the

V -path between the critical simplices t and e. Starting from t,
the descending traversal is performed marking as visited all the

triangles reached by a V -path starting at t. Then, the (trivial)

ascending traversal is performed starting at e and navigating

only the triangles previously visited until t is reached.

The homological equivalence between M∗ and Σ implies

that, by using the SNF reduction algorithm, we are able to

obtain the simplicial homology of Σ. The proposed construc-

tion of the discrete Morse complex allows us to retrieve

homology with respect to any coefficient. Specifically, we can

compute homology with integer or Z2 coefficients. Homology

generators are obtained by suitably navigating the gradient

vector field, using the descending traversal, and storing the

collections of visited simplices.

VI. EXPERIMENTAL RESULTS

We have implemented and tested a first prototype of our

coreduction algorithm, based on the IA* data structure, and

we have compared its performances with Perseus [29]. We

have focused our comparisons on Perseus since its implemen-

tation is also based on reductions and coreductions. All our

experiments have been performed on a desktop computer with

a 3.2Ghz processor with 16GB of memory.

Table I describes the datasets used for the experiments.

We have chosen datasets having most of their top simplices

of maximal dimension. Such simplicial complexes well

describe the trade-off between the two approaches, since

they maximize the number of boundary and coboundary

relations for each simplex. Since the Perseus implementation

encodes all the incidence relations for each simplex explicitly,

we expect such implementation to be much less compact

compared to the IA* implementation. On the other hand, the

computation based on the IA* data structure is expected to

be more time consuming due to the retrieval of the incidence

relations among simplices, since they are not encoded in the

data structure. We used simplicial complexes with various

maximal dimension d to evaluate the scalability of the two

approaches.

For each simplicial complex, we have evaluated the per-

formances for computing homology, and the discrete Morse

gradient and for extracting the homology generators with

(A)

(B)

Fig. 2: (A) Comparison of the storage costs of the two

implementations (IG/IA*) and (B) timings (in seconds) for

the homology computation algorithms based on the IA* and

IG data structures.

both implementations. In Perseus, we have used the mixed

approach using reductions and coreductions since it is faster

when using an Incidence Graph (IG) to encode the complex,

while we used our algorithm based on coreductions only for

the IA* implementation. To evaluate the performances, we

compute, for each complex, the maximum amount of memory

required by the two algorithms and the timings for computing

homology. For complex Elephant, we ran out of memory in

our system when using Perseus.

In Figure 2A, we show the ratios between the storage cost

required by the two implementations (IG/IA*) considering

the maximum amount of memory used at runtime. The IG-

based implementation is about 3 times more expensive than

the IA* implementation for 2-complexes. When working with

3-complexes the ratio becomes 4 and it grows to 17x and

24x for the 7- and 9-complexes, respectively. The storage cost

for the IA* depends on the number of top simplices in the

simplicial complex only. The IG representation, instead, limits

the maximum size of the complex that can be handled in input

when working in higher dimensions.

Considering the storage costs, the IA* data structure would

be a natural choice when working with memory constraints.

However, from the point of view of timing, it is not always

the best choice. In Figure 2B, we compare the results obtained

when computing homology with the two approaches. We no-

tice that, for the 2- and 3-complexes, the IA* implementation

is comparable to the IG one. Extraction times for boundary

relations not explicitly encoded in the IA* structure are mainly
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affected by the dimension of the top simplices and, thus, they

are not so relevant in lower dimensions. However, in higher

dimensions, the lack of encoded relations in the IA* structure

directly affects the computation times, thus resulting in a

relevant overhead when compared to the IG implementation.

VII. CONCLUDING REMARKS

We have considered the problem of efficiently computing

homology with Z coefficients and homology generators for

simplicial complexes of arbitrary dimension. We have ana-

lyzed and proved the equivalence of different methods which

allow reducing the complexity of the computation through

reductions and coreductions, and we have developed a first

implementation based on coreductions, on a space-efficient

representation of the simplicial complex and on a compact

encoding of the acyclic matching induced by the coreduction

pairs.

This is a first step in the direction of a scalable and efficient

computation of integer homology on simplicial complexes. In

our future work, we plan to develop an efficient encoding

for a simplicial complex in arbitrary dimensions based on

the generalization of the PR-star octree [33], a compact topo-

logical data structure based on a spatial index for tetrahedral

meshes, which stores only the vertices and the top simplices

of the complex. This latter would not only reduce the storage

cost further, but also allow an efficient localized homology

computation, overcoming the limitation in this respect of the

IA* data structure. We believe that the generalization of the

PR-star octree could also speed up other existing approaches

to persistent homology computation [26], [27].
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